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Abstract
Accurate chemical thinning of apple trees requires estimation of their blooming intensity, 
and determination of the blooming peak date. Performing this task, as of today, requires 
human experts to be present in the orchards for the entire blossom period or extrapolate 
using a single observation. Since experts are rare and in high demand, there is a need to 
automate this process. The system presented in this paper is able to estimate the blooming 
intensity and the blooming peak date from a sequence of tree images, with close-to-human 
accuracy. For this purpose, a  two  years dataset was collected in 2014–2015, partially 
tagged for the flowers location and completely annotated for blooming intensity. Using this 
dataset, an algorithm was developed and trained with three stages: a visual flower detec-
tor based on a deep convolutional neural network, followed by a blooming level estima-
tor, and a peak blooming day finding algorithm. Despite the challenging conditions, the 
trained detector was able to detect flowers on trees with an Average Precision (AP) score 
of 0.68, which is on a par with contemporary results of other objects in detection bench-
marks. The blooming estimator was based on a linear regression component, which used 
the number of flowers detected and related statistics to estimate the blooming intensity. 
The Pearson correlation between the algorithm blooming estimation and human judgments 
of several experts indicated high agreement levels (0.78–0.93) which were similar to the 
correlations measured among the human experts. Moreover, the developed estimator was 
relatively stable across multiple years. The developed peak date finding algorithm identi-
fied correctly the orchard’s blooming peak date, which was used to determine the thinning 
date in the current practice (the entire orchard is thinned in the same day). Experiments 
testing the algorithm’s ability to find a blooming peak date for each tree independently 
showed encouraging results, which may lead upon refinement to a more precise practice for 
tree-specific thinning.
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Introduction

The agricultural sector faces an immense challenge—the world population is exponentially 
growing, and with it, the demand for agricultural yields. The need to satisfy this demand 
led to significant progress in precision agriculture applications, using advanced technolo-
gies including computer vision, satellite navigation systems, remote sensing, geographic 
information systems, and many others. This work faces the challenge of estimating bloom-
ing intensity of apple trees, a part of the chemical thinning process, using advanced com-
puter vision tools.

In agricultural sciences, thinning refers to the removal of a fraction of the trees’ flowers 
or fruits, to improve the growth of others. The link between thinning and fruits quality has 
been well established in the literature (Forshey 1986; Link 2000). During their blossom 
period, apple trees produce many flowers, which later transform into apples. Each such 
flower requires resource allocation from the tree in order to grow properly and turn into an 
apple. However, when the number of flowers is too high there is an abundance of apples, 
which hence grow to be small, with insufficient quality and may be unworthy for sale. 
When this number is too low, the trees produce a small amount of apples, which are wor-
thy for sale but with a low revenue per acre. In order to get the optimal number of apples, 
which depends on cultivar, growing site and market price structure, trees must undergo a 
thinning process. In addition to keeping the optimal amount of fruits on the tree, the result 
of proper thinning keeps the fruits crops stable for years to come, thus avoiding a phe-
nomenon termed ‘biennial bearing’. This phenomenon causes the tree to yield an unstable 
amount of fruit in a two-year cycle: in the first year, the tree produces an excessive amount 
of apples. In the next year of the cycle, the tree produces a small number of apples. This 
phenomenon directly impacts the size and quality of the fruits and avoiding it is important 
for long term efficiency.

When a tree carries too many fruits, it yields small or low-quality fruits, and in extreme 
cases, this can lead to branches break down due to the load (Dennis 2000). Therefore, the 
trees are thinned using one of the following methods:

1.	 Late Manual Thinning—such thinning is usually performed after the physiological fruit 
drop. The farmers remove a fraction of the fruits, based on their size and proximity to 
other apples. This method was already recommended by several early English horti-
culturists in the seventeenth century and was reported to be useful by Gourley back in 
1922 (Gourley 1922), but still remains one of the most widely used methods for thinning 
today (Dennis 2000). It has two main drawbacks:

•	 Manpower—using this method, to thin one acre, there is a need for four to five 
working days. This has aspects of manpower availability as well as high costs.

•	 Timing—Since the manual thinning is carried out late, it has reduced effect on 
improving the fruit size and quality.

2.	 Chemical Thinning—Chemical thinning is done by spraying chemical solutions suitable 
for this purpose. The entire process is accompanied by experts that can evaluate the trees 
condition based on their physiological states. In each day during the blossom period, 
the experts examine the trees and give each of them a score in the range (0 to 5), which 
represents their blooming intensity (where 0 is lowest blooming intensity and 5 is the 
highest). The purpose of this rating system is to find the peak blooming date of each 
tree. The blooming peak is defined to be the day before the blooming intensity starts to 
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decrease. When the blooming peak is found the thinning date of the entire orchard can 
be determined. The blooming peak day must be carefully selected. Spraying the chemi-
cal solution too early or too late can lead to over thinning causing the trees to produce a 
small number of apples. Because of these reasons, farmers hesitate to use this method, 
even though it is considered to be better, cheaper and more efficient than manual thin-
ning.

Chemical thinning is considered one of the most effective methods to improve apple 
quality, size, and color, and in addition, helps in reducing the biennial bearing phenomena 
(Yoder et al. 2009). Though chemical thinning in the blossom period is superior to post-
bloom thinning, it remains one of the more unpredictable parts of apple production with 
large variations within years and from year to year (Robinson et al. 2010). Hence, there is 
a need for a precise system that could overcome different variability issues. Chemical thin-
ning relies on an accurate estimation of the blooming intensity of the trees, as it determined 
the time of application. As of today, this estimation is done by human experts that visually 
inspect a limited number of trees at selected time points during the 10 days of the blossom 
period. Since this process requires the experts’ physical presence in the fields, they find it 
hard to provide full support for all the farmers in need. Vision based estimation of bloom-
ing intensity can reduce the dependency on experts and allow automation of this task. With 
an accurate detection system using computer vision tools, blooming intensity estimation 
can be achieved using a simple digital camera operated by an unskilled worker.

The objectives of this study were: (a) to build an automated vision-based system which 
estimates apple tree blooming intensity and supports peak day determination with accuracy 
matching the human expert’s accuracy. The system should be applicable in field conditions 
and invariant to differences between years; (b) to conduct field test evaluating the system 
and to quantify the degree to which it achieves the goals stated in (a). The research hypoth-
esis was that such a system can be built based on recent advances in deep networks for 
vision. The knowledge sought in this study is its construction details and obtained perfor-
mance. The work was done based on the engineering method guidelines focusing on prob-
lem definition, data gathering, system construction, and evaluation. For more information 
about the engineering method process see (Koen 1985).

Background

There are numerous studies related to the problem of object detection in an agricultural 
environment, with the aim of automating agriculture tasks which are highly labor intensive 
(Gongal et al. 2015). Most of the suggested object detection algorithms are based on find-
ing pixels colors from different colors spaces (for example—RGB or HSV). These algo-
rithms mostly involve a binarization of an image using tuned thresholds, which are variant 
to changes in illumination, camera position etc. For example, Aggelopoulou and his col-
laborators (Aggelopoulou et al. 2011) first converted the image from RGB to a single chan-
nel measuring the distance to a pre-defined flower color. Then, they create a binary image 
by applying a threshold. Finally, they regressed the yield of the given tree from the number 
of found pixels. In another example, Adamsen et al. (2000) used image processing tools to 
isolate areas in the Lesquerella plant images that contain flowers pixels, then estimate the 
number of the flowers in the image based on an Euler number method. Though their system 
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successfully estimates the number of flowers, it analyzed one image in 3.5 min, which may 
be a major setback when using a large dataset with hundreds or thousands of images.

In (Hočevar et  al. 2014) the authors use image processing tools to estimate the num-
ber of flower clusters. Their method starts by converting the image from RGB color space 
into hue, saturation & lightness (HSL) color space. Then, they created a binary representa-
tion of the image using hard thresholding for each of the HSL channels. To avoid noise, 
they rejected areas in the image that were too small or too large to be considered as flow-
ers clusters, measured by the number of pixels in each cluster. This method suffers from 
hard-coded parameters, such as the threshold of each channel in the HSL color space. In 
(Wang et al. 2013; Sa et al. 2016) the authors developed a computer-vision system to detect 
apples, but only in controlled illumination, where the end task is yield estimation. Their 
system uses colors of pixels as a key feature to detect apples but suffers from undetected 
green apples, since they were partially covered by the tree foliage. Linker and his associ-
ates (Linker et al. 2012) addresses these specific issues in their work. First, they performed 
their research under natural illumination conditions and second, they quantify the number 
of green apples in RGB images. Though they were able to successfully find ~ 85% of the 
green apples, they still encountered a large number of false positive detections.

In recent years, deep Convolutional Neural Networks (CNNs) have significantly 
improved the accuracy in computer vision tasks and are widely used in several classic 
vision tasks as object classification (Krizhevsky et al. 2012), detection (Ren et al. 2015), 
and segmentation (Long et  al. 2015). These networks are better able to cope with real-
world vision problems than previous technologies, hence providing new automation oppor-
tunities. Object detection in images is considered a hard task, even on the benchmark data-
sets PASCAL—VOC (Everingham et  al. 2010) which has received substantial attention 
in recent years. Detection in real outdoor settings, rather than in a controlled one, make 
this task more difficult (see the discussion in the data acquisition section). When a CNN 
is applied to an image, the image is processed with a number of convolutional layers, each 
composed of multiple convolution operations and a non-linear operator. The output of this 
convolutional processing is a high dimensional feature map. In such a feature map, each 
location in the original image is represented as a column of features describing the area 
around it. During training, the parameters of the convolutional operation, termed filters, 
are gradually modified to minimize a target loss of interest using a gradient descent opti-
mization procedure. In the resulting model, higher layers in the network contain semantic 
features, providing information which enables decision regarding object identity.

In the case of agriculture, the environmental conditions present several challenges for 
computer vision tasks such as illumination variation, object occlusion, and the large inter-
nal variance of the flower object class with respect to size, appearance and posture. In simi-
lar tasks, CNNs were found to be useful since they avoid the need for hand-engineered 
features: with enough data, they learn good representation and provide a system with high 
resistance to irrelevant variability issues. Such networks were shown to provide state-of-
the-art results in the agricultural domain for detection of fruits in harvesting robots (Potena 
et al. 2016; Sa 2016), disease identification in crops (Mohanty et al. 2016) and more.

Specifically, Bargoti and Underwood (2017) used the faster R-CNN algorithm (Ren 
et al. 2015) to detect mangos, apples, and almonds. Though they succeed to detect apple 
and mangos with good results, they struggle to detect the almonds on the tree, since they 
are smaller and harder to notice. The latter is close to the problem of detecting flowers on 
an apple tree, since these small objects often overlap with one-another and are harder to 
track. Another example can be found in (Sa et al. 2016) work, in which they used the faster 
R-CNN algorithm to detect sweet peppers and rock-melons in RGB and Near-Infrared 
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(NIR) images, for harvesting purposes. This work also demonstrates the success of faster 
R-CNN and its ability to detect objects in an agricultural environment. A noticeable dif-
ference between flower detection (presented in this paper) and fruit detection is that fruits 
usually grow apart and far from one another while flowers (and in particular apple flowers) 
grow one next to each other in a cluster formation. This work follows a similar approaches 
to in (Sa et al. 2016; Bargoti and Underwood 2017) for flower detection, but uses the infor-
mation for regression of the blooming intensity level and determination of peak blooming 
day. Another approach to count objects in an image is to use a CNN as a regressor. Mean-
ing that instead of detecting the flowers (and their position), this approach takes an image 
as an input and directly regress the number of objects in it. Dobrescu and his collaborators 
(Dobrescu et al. 2017) uses this approach to count the number of leaves of the Arabidopsis 
and Tabaco plants dataset, published by (Minervini et al. 2016). Though the Arabidopsis 
and Tabaco plant images in the datasets shows that the leaves overlap, which resembles to 
the issue this work as encountered with, they usually contain a relatively small number of 
leaves on a single image-centered plant.

Development of decision support systems for chemical thinning is a limited area of 
research in the professional literature. In (Robinson et al. 2010), the authors present pre-
dictive system that can help growers understand when to chemically thin the apple trees 
and with which solutions. In their research, the authors try to assess the effect of different 
chemical solutions on three kinds of apples—‘Royal Gala’, ‘McIntosh’ and ‘Ace Delicious’. 
This assessment is done by a prediction model based on location-specific measurements 
as temperature and sunlight. This research does not consider blooming intensity estima-
tion, but only examines the effect of different chemical solutions, sprayed at different time-
windows, on trees yield. This system can only be used when the parameters of the model 
are known (tuning the parameters took a decade in this specific research) and is applicable 
only if the peak date is already known to the apple growers.

The system presented in this paper was developed for blooming intensity estimation 
based on a CNN flower detector, and was tested for performance by comparing it to human 
expert judgments in real field conditions. Data was collected from two consecutive seasons 
and annotated for both flower positions and tree blooming intensity. A robust flower detec-
tor was successfully trained and estimated for detection performance. Based on the trained 
detection system, a blooming intensity estimator, which is close to human level accuracy, 
was built, and carefully measured for performance. Finally, the capability of the resulting 
system for determining the day of the blooming peak was estimated and analyzed.

Materials and methods

Data acquisition

The data for this work was acquired in Matityahu farm in the Western Galilee area in Israel 
(33° 4′ 0.28″ N 35° 27′ 8.97″ E), at altitude of 680 m above sea level. At 2014, 60 trees 
were tested between the 4th and the 9th of April and in 2015, 159 trees were tested between 
the 8th and the 15th of April. During this period RGB images of each tree were acquired 
daily resulting in 300 and 795 images in 2014 and 2015 respectively. The examined trees 
were of the Golden Delicious apple kind and were between 1.9 to 3 m tall. The distance 
between tree rows was 3 m and the interval between trees within the row was 1.5 m. All 
images were taken using a Canon 6D camera (20.2 megapixels) equipped with Canon’s 
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24 mm prime lens (at 2015, Polaroid filter was added on the lens to prevent specular reflec-
tance), between the hours 09:00 AM and 12:30 PM. The camera was placed on a tripod, in 
approximately 1.5 m away from the trees. Images were saved in a.jpg format in resolution 
of 3648 × 5472 pixels (width × height).

This paper presents two main tasks: detection of flowers on the trees, and estimation 
of blooming intensity. For the detection task, 20 images from both 2014 and 2015 were 
selected (10 images from each year) and the bounding box around each flower was manu-
ally marked. Apple flowers grow in clusters, where each cluster can potentially contain up 
to 6 flowers which are in high proximity to one another (see in Fig. 1c). This high prox-
imity required fine and careful labeling, separating between partially occluding flowers. 
MATLAB’s image labeling tool (Image Training Labeler, introduced in version 2014a) 
was used for this purpose. In total, 2893 flowers were marked and served as positive set of 
flower samples, while negative samples were mined from the non-marked area of the same 
20 images.

For the task of blooming intensity estimation, all the trees (159 trees from 2015, and 60 
from 2014) were annotated by an expert at one time point each year, close to the estimated 
time of peak. A small subset of the dataset containing 62 tree images, taken in a single 
day (the 13th of April, 2015), was annotated for blooming intensity estimation by a sec-
ond expert. This subset was used for checking the agreement between two human estima-
tors, and for checking the agreement of the algorithmic estimation with each of them is a 
single-day.

The full dataset, is considerably larger, it included images and annotations in several 
days, from the beginning of the blooming period, until the day after the peak. Its annota-
tion was done by the less trained experts. Blooming peak date was estimated in a sequential 
manner: the blooming intensity in a certain day was compared with the blooming intensity 
of the same tree in the previous days, in order to determine the peak blooming date. All the 

Fig. 1   Variability difficulties of the flower detection task. a, b viewpoint variations. A contains frontal flow-
ers while B contains some flowers from a lateral view. c, d partial occlusion. In c a branch hides two flowers 
and in d leaves cover a group of flowers. e, f clusters. The apple flowers grow in tight groups, which some-
times make it almost impossible to separate and count them. g, h Scale variability. This images were cut 
using the same rectangle size. As can be seen, flowers in g are significantly larger. i Illumination variability. 
Some images and image regions are significantly darker than others. While g, h contain flowers which are 
almost absolute white, flowers in i have a pink hue (Color figure online)
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blooming intensity annotations were done based on observation of the trees only from one 
side, the side that faced the sun, as this is the practice used by thinning experts. In order to 
develop a generalized model, images from a wide range of environmental conditions were 
acquired (Kapach et al. 2012; Gongal et al. 2015):

•	 Images acquired under different illumination conditions were chosen to cover illumina-
tion variations due to weather or camera characteristics (like shutter speed).

•	 Partially occluded flowers were tagged as flowers to enable better detection with partial 
occlusion.

•	 Different flower scales and postures were considered to cover object posture variations
•	 Sufficient images from each blooming intensity class were annotated.

Figure 1 depicts examples of flowers in the acquired images, showing the great variabil-
ity in the data set.

Processing algorithms

The developed system included three components: a flower detector, a blooming intensity 
estimator, and a peak-day finding algorithm.

For flower detection, the faster R-CNN detector presented by Ren et al. (2015) was used 
as a base algorithm. Changes were made to both the algorithm and the dataset to adapt the 
algorithm to the specific environmental and imagery issues.

Based on the flower detector, two models for blooming intensity estimation of apple 
trees were built, when two different scenarios were considered. In the first scenario, estima-
tion of the blooming intensity was done as an isolated event, based solely on a single image 
of the tree at a single time point. In this task, the inference was a plain image-to-estimate 
task, hence was termed on-sight estimation. In the second scenario, blooming intensity 
estimation was done for in a sequential context, as part of a series of estimations of the 
same tree across several days. This is a more complex task, in which the system tried to 
mimic the context of the human blooming intensity decision, based not only on the current 
tree state but also on its state in previous days.

As discussed above, the goal of blooming intensity estimation was to determine the 
blooming peak date, since it directly affects the time for application of the chemical thin-
ning. In current agricultural practice, the blooming peak day is defined as the day when 
80% of the trees in the entire orchard have reached their blooming peak. The developed 
algorithms were used to estimate the blooming peak of each tree and hence make a deci-
sion for the whole orchard. Nevertheless, it can also be used to make tree specific decisions 
and apply variable rate spraying.

Flower detection using faster R‑CNN

To detect the apple flowers the faster R-CNN architecture (Ren et al. 2015) was used. The 
faster R-CNN detection algorithm does not train the network from scratch. The detec-
tion dataset is small, thus the training stage was done by using a pre-trained classification 
architecture which was trained on a larger dataset. The implementation in this work used 
the VGG-16 network implementation (Simonyan and Zisserman 2014), pre-trained on the 
ImageNet dataset (Deng et al. 2009).
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The detection task was decomposed into two stages (see Fig. 2), implemented as two 
different but connected network modules. The first network module was the Region Pro-
posal Network (RPN), responsible for finding areas in the image that are likely to con-
tain an object, called Regions of Interest (ROI). This module identified rectangles which 
may contain objects based on general considerations and was not specific to a certain 
class. This module had a high false alarm rate but a low misdetection rate, meaning that 
it detected a lot (thousands) of rectangles in an image, including most of the objects but 
many non-objects as well. The selected ROIs were then moved into the second network 
module, which classified them into M classes + background (for negative examples), but 
also further refined the suggested bounding boxes using a finer box-regressor, trained 
to minimize an object-specific loss function. This classifier was trained to discriminate 
flower versus background. The presented implementation started by cropping the origi-
nal image into sub-images (see cropping method below for details). During testing, the 
RPN returned Np = 500 bounding boxes per sub-image, which is significantly higher 
than the original number used in Ren et al. (2015). This is because the number of flow-
ers in each sub-image is usually much larger than the number of objects in a typical 
PASCAL—VOC image. Each bounding box received a score within the range [0, 1], 
depicting the confidence level of the algorithm regarding flower presence in the ROI. 
When this confidence level exceeded a pre-defined detection threshold, the algorithm 
declared that a flower was found.

Since the original images were very large (3648 × 5472 pixels), and the size of the 
flowers was small (70 × 100 in average) some algorithmic details had to be modified 
to enable detection of many small objects instead of few large ones. Hence, a cropping 
method was developed to crop the images into j × j parts, with an additional small pad-
ding on the right and bottom sides to avoid losing information about the flowers posi-
tions. These j2 sub images were subjected to the detection algorithm and detected flow-
ers were then embedded back to their position in the large image. Various j values were 
tested and j = 7 was selected since this division provided best empirical results.

a b c
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Fig. 2   a A recall-precision curve for flower detection, obtained on the 5 test images containing 819 flow-
ers in total. The threshold for positive detection of a flower was set to IoU > 0.3 (see data collection sec-
tion). The detection and false alarm rates were comparable to those obtained on PASCAL—VOC dataset 
(AP = 0.683), but with lower localization accuracy (as there IoU > 0.3 threshold was used). This setting fits 
the blooming intensity estimation application well, as exact flower localization was not of interest for it. b, c 
algorithm results on typical two sub images. Each tree image contained 49 such sub images
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Implementation details

The faster R-CNN algorithm was built based on the PASCAL—VOC dataset properties, 
some of which were unsuitable for the flower detection task. In addition to the image 
size issues stated above, several other modifications were made:

Anchors sizes—The anchor parameters are a part of the RPN network, stating the ini-
tial area sizes that might contain objects. These initial sizes were refined by the RPN to 
obtain object proposals. For the Pascal dataset, the anchors were initiated as boxes with 
areas of 1282, 2562 and 5122 and aspect ratios of 1:1, 1:2 and 2:1 which were too big 
for the relatively small sized flowers. Hence, the anchors were adjusted to suit the flow-
ers’ sizes and were initiated to be areas of 322, 642 and 1282 and aspect ratios of 0.75:1, 
0.9:1 and 1:1. These ratios were selected by manual and visual exploration and found to 
give good results.

Percentage of positive and negative examples—As mentioned above, the RPN 
extracted ROIs from the image. Each of those ROIs received a score (within the range 
[0, 1]) representing the confidence of containing an object. During training, the RPN 
extracted Np > 6000 bounding-box proposals from each sub-image. These ROIs usu-
ally overlapped, hence a Non Maxima Suppression (Hosang et al. 2017) procedure with 
threshold at 0.7 was applied to remove redundant rectangles. At the end of the process, 
the 2000 proposals with the highest confidence of containing an object were selected. 
To decide whether a detection hypothesis should be labeled as object or background, 
the metric termed Intersection over Union (IoU) was used. The metric was computed 
using two rectangles: the detection rectangle and a ground truth object rectangle. It was 
calculated by dividing the area of overlap between the two rectangles by the area of 
their union. When the IoU between an object detection hypothesis and the ground truth 
was IoU > 0.5 the bounding-box was considered as foreground (flower) and when it was 
0.1 < IoU < 0.5 the bounding-box was considered as background. Bounding-boxes with 
IOU < 0.1 were discarded since they considered as easy negative examples. The ratio 
between positive and negative examples was set to 1:1 since the number of flowers in 
each sub-image was relatively high (often between 5 and 30).

Tolerance to pose deviation—Usually in detection tasks, the objective is to find the 
exact position of the objects in a given image. Given this task, in order for a detection 
hypothesis to be declared as “hit” the IoU between the ground truth and the detection 
hypothesis should be greater than t = 0.5. In this work the detection was an intermediate 
sub-task, where the goal was to estimate the blooming intensity, and the exact position of 
the flowers was of low importance: the system needed to count them, not to localize them 
accurately. Hence this parameter was set to a lower value of t = 0.3.

Blooming intensity estimation

Based on the results of the flower detection algorithm, the tree’s blooming intensity was 
estimated, on a similar scale that the human expert scores the trees, between 0 and 5. In 
order to trace the experts’ estimation, two different linear regression models were used—an 
on-sight model and a sequential model.

On-sight estimator: The on-sight estimator estimated the tree blooming intensity based 
on a single image, with no past information about the tree. This model included four 
explanatory variables:



	 Precision Agriculture

1 3

1.	 Number of flowers—this number was the output of the detection phase with a detection 
confidence threshold set to 0.83. The detection threshold parameter was tuned during 
estimator training.

2.	 Number of flowers squared
3.	 Average flowers size—this variable was chosen based on the assumption that larger and 

more mature flowers indicate advanced stage of blooming, whereas smaller flowers 
indicate that the tree is still in an earlier blooming stage.

4.	 Number of flowers for additional detection thresholds—the selected detection thresholds 
were 0.7, 0.75, 0.8, 0.92, and 0.99.

Sequence-based estimator: This estimator took into consideration time series features 
describing the tree in previous days. Observing the expert annotator decision making, such 
features were shown to implicitly or explicitly affect his blooming level estimation. Thus 
in this model, the variables presented below were added to the variables of the on-sight 
estimator:

1.	 The day index in which the image was taken—as stated above, the dataset contains 
images of the trees for 5 days during the blooming season (2015). Thus, the day index 
in {1,…,5} was used as a feature. The motivation was that the expert expects blooming 
intensity increase with day index.

2.	 Difference between the numbers of flowers in last two consecutive days—this variable 
tried to capture the current trend of blooming intensity (increase or decrease).

3.	 Difference (between the numbers of flowers in last two consecutive days) squared
4.	 Difference between the current number of flowers and the average number of flowers 

on the tree in previous days squared

Blooming peak date estimator

After estimation of the blooming intensity for each tree, in each day, the final task was to 
determine the blooming peak date of the tree, and of the entire orchard. The blooming peak 
estimator was built to enable real time decision making, hence the decision for day i can 
only rely on information gathered at days 1,…,i. The algorithm mimicked the expert’s logic 
in a very simple manner. For a specific tree, it detected the first day in which the blooming 
intensity started to decrease, and set the blooming peak to be the day before. To reduce the 
effect of measurement noise, a decrease was only declared if Si − Si−1 > 𝜀 for some 𝜀 > 0 , 
with Si the blooming intensity of day i. This threshold (ε) was related to the reliability level 
of the estimation: when it was low ( 0 < 𝜀 < 0.5 ), the reliability attributed to the bloom-
ing intensity estimator/annotator was relatively high (so if the system observed a decline 
of 0.5 rank, it determined the peak date) and vice versa when it was high. If no blooming 
decrease was detected across the entire day’s sequence, the algorithm declared the last day 
as the peak blooming day.

In order to determine the orchard’s global peak blooming day, the fraction of trees that 
had already reached their peak was accumulated for each day, building a Cumulative Den-
sity Function (CDF) of the peak reaching probability. When the fraction of trees which 
have reached their blooming peak first reached 0.8 or above, that day was declared as the 
global blooming peak date of the orchard.

In order to compare human and algorithmic decision regarding the peak blooming day, 
the procedure for determination of the blooming peak date was applied twice: once for the 
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human blooming annotation data and once using the estimations provided by the blooming 
estimation algorithm (using both the on-sight and sequenced-based estimators).

Other processing algorithms

Most of the methods found in the literature (Aggelopoulou et  al. 2011; Adamsen et  al. 
2000; Hočevar et al. 2014; Wang et al. 2013; Linker et al. 2012), are based on pixels of a 
specific color using image processing tools. Two such alternatives were implemented, and 
compared to the proposed model in this work, for each of the years 2014, 2015.

For each year, the typical flower color was determined using the same ten images that the 
detector used in the training stage. Both RGB and HSV color spaces were considered. From 
each of the 10 images, 5 randomly flower bounding-boxes were selected and resized to 
65 × 65 × 3, which was the average flower size in the dataset. The target flower color was cal-
culated from these flowers as the median value of each channel (since the bounding-boxes 
also contains some background information). For color-based flower detection, a binary 
image was computed by thresholding the RGB values. Several thresholds were examined, 
finally choosing the one which maximizes the system’s accuracy. In the first implemented 
model, the number of pixels found in the selected color range was used as an explana-
tory variable, and blossom intensity levels were regressed directly from it. This method is 
referred to as ‘baseline 1’. In the second model, the method presented in (Adamsen et al. 
2000) is implemented—the binary image is used to compute the Euler number of the image 
and used that number as the explanatory variable. This method is referred to as ‘baseline 2’.

Algorithms evaluation procedures and performance measures

The annotated detection dataset, which contained 20 tree images, was divided into 2 parts: 
15 images for training the detection model, containing 2074 flowers, and 5 images contain-
ing 819 flowers for testing it. Both train and test sets contained images from 2014 and 2015 
of apple trees. Note that despite having a small number of images hundreds of flowers and 
many thousands of non-flower rectangles were contained in those images, providing an 
effective sample size for testing.

In order to evaluate the detection performance, recall and precision indicators were 
used, defined by:

(1)	 recall =
True Positive

True Positive+False Negative

(2)	 precision =
True Positive

True Positive+False Positive

Changing the confidence threshold of the algorithm (above which an object is declared 
as ‘flower’) provides different (recall, precision) points, and a tradeoff graph between 
them is created. A single accuracy (or error) measurement is not useful in object detection 
problems since the data is highly unbalanced toward the ‘negative’ non-object examples, 
comprising above 99% of the rectangle examples in an image. Hence obtaining error of 
less than 1% is possible simply by always predicting a rectangle hypothesis to be nega-
tive. Instead, the area under the recall-precision curve (termed Average Precision (AP)) 
was used, which is the commonly used performance measurement in detection challenges.
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The blooming intensity estimation evaluation was done with the Pearson correlation 
index. The correlation between the algorithm’s blooming intensity estimation and the 
human judgment was measured. In order to avoid over-fitting, 50 experiments were per-
formed, wherein each experiment the dataset was randomly split into train and test sets 
(70% for training). The reported results of each estimator are the averaged Pearson correla-
tion obtained across the experiments.

Results and discussion

Detection results

The obtained recall-precision curve for the flowers can be seen in Fig. 2a. The Average 
Precision score of this curve is 0.683, indicating a good, though not perfect, level of overall 
detection performance. As an example, a threshold exists which allows obtaining a detec-
tion rate of 0.695 of the flowers with average of 1.4 false alarms per sub-image. Typical 
examples of the algorithm’s output can be seen in Fig. 2b, c.

Blooming intensity estimation

On sight estimator results

The blooming intensity of a subset containing 62 images (from 2015) was estimated by 
two different human experts. Table 1 shows the agreement between the on-sight estimator 
of the blooming intensity and the human expert, expressed as the correlation between their 
estimations. The most significant feature to the model was the number of flowers, with the 
other features providing a small but positive contribution to the Pearson correlation. The 
agreement between the two human experts, as also measured by the Pearson correlation 
between them, and was found to be 0.8, indicating a high but not perfect degree of agree-
ment. The correlation between the on-sight algorithm estimation and the human estimation 
was 0.93 and 0.82 for an experienced and a less trained expert respectively. This means 
that on this dataset the algorithm has higher agreement with the two humans than they have 
among themselves—hence it qualifies as an expert. Note also that the agreement between 
the algorithm and a mature expert was higher than the agreement with a less trained expert. 

Table 1   Correlation between the 
on-sight estimator of blooming 
intensity and human expert

Models with different features are depicted, trained on the 2015 data-
set
X1 is the number of flowers,, X2 is the number of flowers squared, X3 
is the average flowers size and X4−8 is the number of flowers when the 
detection threshold is different (see blooming intensity section)

Variable Pearson correlation Difference

{X1, X2, X3, X4−8} 0.82 –
{X1, X2, X3} 0.81 0.01
{X1, X2} 0.80 0.02
{X1} 0.78 0.04
– 0 0.82
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In Fig. 3, examples for agreement and disagreement between the algorithm and the human 
judges are presented. The on sight estimator correlation on the whole 2014 dataset (300 
images) was 0.88, and 0.82 for the 2015 dataset (795 images). Table 1 shows the Pearson 
correlation agreement scores of model versions for 2015. 

Sequence‑based estimator results

Since the apple trees blooming season was 10 days long, the use of a sequence-based esti-
mator can help estimate the blooming intensity in case there are ‘hidden’ features related 
to the time series structure. Table 2 shows the correlation between the sequenced-based 
estimator and a less trained expert for the 2015 dataset. The results show that time series 

Fig. 3   Human judges and algorithm agreement and disagreement of blooming intensity from 2015. a, b 
trees on which both experts and the algorithm agreed on the blooming intensity (human judges ranked tree 
A as 3–3.5 and tree B as 1–1.5 while the algorithm ranked them 3.5 and 1.5 respectively. c the human 
judges agreed on the blooming intensity and ranked it to be 4.5–5, the algorithm ranked the blooming inten-
sity as 3.5

Table 2   Results of the 
sequenced-based estimator, based 
on the 2015 dataset, annotated by 
a less trained expert

The description of X1, X2, X3, X4−8 can be found in Table 1, with X1 
being the dominant feature of number of flowers. X9 is the day index 
in which the image was taken, X10 is the difference between the num-
bers of flowers in last two consecutive days, X11 is the difference 
between the numbers of flowers in last two consecutive days squared 
and X12 is the difference between the current number of flowers and 
the average number of flowers in previous days squared

Variable Pearson cor-
relation

Difference

{X1, X2, X3, X4−8, X9, X10, X11, X12} 0.86 –
{X1, X2, X3, X4−8, X9, X10, X11} 0.85 0.01
{X1, X2, X3, X4−8, X9, X10} 0.84 0.01
{X1, X2, X3, X4−8, X9} 0.82 0.04
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features like the day index (X9), and the difference between the numbers of flowers in last 
two consecutive days (X10) significantly contribute to the prediction. Using the sequenced-
based estimator, the Pearson correlation obtained was 0.88 in 2014 data and 0.86 in 2015. 
The features used in the sequenced-based model are described in Table 2. This indicates 
the contribution of time-series factors to the bloom intensity estimation as done by humans, 
and a relative success of the algorithm in mimicking this logic.

Knowledge transfer between years

An important concern for model generality was the ability of a trained model (which was 
trained on a specific year dataset), to predict the blooming intensity of a different year. Such 
transfer is necessary for a realistic blooming estimation system, which does not require 
re-training every year. Tables 3 and 4 shows the Pearson correlation obtained, using the 
on-sight and the sequenced-based estimator, both with all features, when cross-year gen-
eralization is considered between 2014 and 2015. For example, the sequence-based model 
trained on the 2015 dataset resulted a correlation of 0.83 on the 2014 dataset, compared to 
0.88 obtained by full training and testing on 2014 data. The small gap between the results 
indicates that the model is, to a large degree, year-invariant. It can be seen that both the 
on-sight and the sequence-based estimator generalized well between years, but the on-sight 
model, which is simpler, had an advantage in this respect.

Comparison against baselines approachs

The proposed model in this work was compared to the color-based baselines described in 
the ‘methods compared’ section. The threshold for declaring a pixel as ‘flower-pixel’ was 
tuned to maximize the Pearson correlation of the resulting regressor (with the human judg-
ment). The results are described in Table  5. It can be seen that the Euler-based system 
is superior to plain pixel counting. However, both pixel based and Euler-number based 
methods perform lower than the CNN-based system, with their best results reaching 0.45 
Pearson coefficient, while the CNN-based system reached above 0.8 in all cases. In addi-
tion, the color-based system suffered from instability across the 2  years tested, with the 
HSV–based systems providing better results for 2014, while for 2015 RGB was superior.

Table 3   Pearson correlation 
obtained by using the on-sight 
estimator when trying to transfer 
the knowledge between years

Test-on

2014 2015

Train-on 2014 0.88 0.81
2015 0.88 0.82

Table 4   Pearson correlation 
obtained by using the sequenced-
based estimator when trying to 
transfer the knowledge between 
years

Test-on

2014 2015

Train-on 2014 0.88 0.80
2015 0.83 0.86
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Blooming peak date estimator

The global orchard’s blooming peak date (as determined by the human annotator) and 
the sequenced-based algorithm estimation are presented in Fig.  4a, b respectively. In 
both years the algorithm was able to successfully determine the orchard’s day of peak 
blooming, defined as the day in which 80% of the trees reached their peak. The day 
found by the peak finding algorithm (for both algorithmic estimations and human anno-
tations) was indeed the day determined the breeders as the orchard’s peak date.

This work strives to go beyond global peak date decision and tries to assess if a per-
tree peak date estimation is feasible. Though both estimators agreed with the human 
annotator regarding the global peak date, agreement on blooming peak for individual 
trees was lower. Figure  5 show histograms of the deviations in peak date determina-
tion between days inferred from the human annotations and days inferred from the on-
sight blooming intensity estimator’s scores. Table 6 summarizes the same results as “Hit 
Ratio”, which is defined the percentage of trees in which the algorithm and the human 
judge agree on the peak blooming day of the tree, and “Hit Plus/Minus 1”, which repre-
sent the percentage of trees in which the judgments differ by one day at most. The table 
contains results for two choices of the peak determination threshold � (see the blooming 
peak estimator section). For � = 0.5 , the human and the on-sight estimator fully agreed 

Table 5   Comparison between 
Pearson correlation scores of 
color based methods and the 
proposed CNN-based models 
(on-sight and sequenced-based)

The CNN-based models provide agreement rates (with the human 
expert) which are in average more than twice better than color-based 
methods

RGB HSV

2014 2015 2014 2015

Pixel based 0.11 0.39 0.32 0.19
Euler number based 0.17 0.45 0.43 0.19
On-sight 0.88 0.88 – –
Sequenced-based 0.82 0.86 – –

Fig. 4   Comparison of peak determination between human annotator and the sequenced-based estimator in 
2014 (a) and in 2015 (b). The graphs present a CDF of the number of trees reached to their peak in each 
day. The solid black bars represent the human estimation and the dotted bars the algorithm judgment



	 Precision Agriculture

1 3

on the peak date in 47–57% of the trees, and for ~ 90% of the trees deviations were one 
day at most. 

Discussion

The blooming intensity estimators presented in this work tried to follow human decision 
making and considerations. Though the blooming intensity estimation of the algorithm 
reached human level performance for the on-sight estimator, there are still things that can 
be improved:

1.	 Improving the detection and counting of open flowers—selected branches with accu-
rate human counts of open flowers could be followed over time to increase the system 
accuracy.

2.	 Detection and counting of buds—the buds on the tree provide information about its 
maturity. Abundance of them indicates that the tree is in its first blooming stages, while 
their absence indicates the contrary. Also, buds detection may enable prediction of the 
blooming peak day a few days before peak onset, which may be very useful for work 
planning.

Fig. 5   Deviation of single tree peak estimation when using the on-sight estimator. The difference threshold 
(see the blooming peak estimator section for more details) was set to 0.5 for the on-sight estimator and 0 for 
the human annotator. The agreement between the human annotator and the estimator on most of the dataset 
was ~ 60% in 2014 (a), but in 2015 (b), the agreement was lower

Table 6   Agreement on specific 
tree peak date in two cases

Row 1: The difference threshold was set to 0.5 for the on-sight estima-
tor and 0 for the human annotator. Row 2: The difference threshold 
was set to 0.75 for the on-sight estimator and 0.5 for the human anno-
tator

% Hit % Hit

2014 2015 2014 2015

Peak Sensitivity ϵ = 0.5 0.57 0.33 0.92 0.69
ϵ = 0.75 0.47 0.58 0.93 0.84
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3.	 Isolation of the trees in the images—the images were taken in real outdoor settings, 
where sometimes branches of neighboring trees appear in a tree image. Better tree 
isolation can be enforced using either a better image capture protocol or development 
of tree segmentation algorithms.

A main obstacle for further improvement of the on-sight estimator is that it is already 
in a human level, and further improvements will be very hard to estimate by comparing 
to human judgment, which already seems to be noisier than the algorithm. Hence further 
improvement may require a more objective methodology for algorithm assessment, for 
example, exact counting of flowers for a tree population. Going beyond blossom intensity 
estimation, a good option is an experiment in which the real number of apples obtained 
from a tree is measured, for different thinning decisions suggested by human and algorithm.

One complex issue is the time-series logic applied by the human expert in its blooming 
intensity estimation. This logic is not fully understood, and it’s hard to tell how replicable 
and reliable it is. The latter point can be estimated in future studies by collecting annota-
tions from several experts on the same sequence dataset, and see if they agree with each 
other better than the agreement between algorithm and human. This will help to clarify 
if the time series human considerations are replicable and consistent. If this logic is con-
sistent, a possible direction for further research would be improvement of the algorithmic 
time series reasoning, so it has higher resemblance to the human reasoning. However, in 
this case too, it is not clear if the human sequential considerations, even if replicable, are 
indeed relevant for better thinning decisions.

This work showed that blooming intensity and peak-blooming date can be determined 
algorithmically, with close to human performance. This can be taken into practice by devel-
oping a real system, combining the suggested perception system with a sprayer equipped 
with an adaptable spray device. Toward this goal, however, additional perception chal-
lenges should be met, like spraying uniformity, self-navigating systems and tree isolation.

Summary and conclusions

The proposed system consists of three modules—flower detection and counting, bloom-
ing intensity estimation, and blooming peak estimation. Based on the results presented, 
a CNN-based detector was able to detect flowers reliably despite confounding conditions 
including flower viewpoint, illumination variance, flower clustering formation, and flower-
occlusion. A CNN-based visual inference system can get close to human accuracy in the 
task of blooming level estimation. Furthermore, using only 15 large scale trees images for 
training, the obtained performance was comparable to other detection benchmarks datasets, 
containing a larger amount of images. In addition, a system built for flower level estima-
tion in a certain year was robust enough to provide good results in another year. Finally, an 
inference mechanism with such a visual system can obtain close to human performance in 
the task of choosing the blooming peak date.

Blooming intensity estimation is a statistical task: its success does not depend on accu-
rate detection of all flowers, but on rough estimation of their number. It is hence not sensi-
tive to errors typical for current object detection technology, and its accuracy is enough to 
reach human level performance, as reported and shown for the on-sight estimator. How-
ever, when time series effects also exist there are still discrepancies between the algorithm 
(even its sequential version) and the human judgment. The human sequential judgment is 
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not explicit, hard to justify and it is not clear if it is repeatable, i.e. if the same expert anno-
tates the same dataset twice, will he give the same estimation.

Regarding the task of determining blooming peak date, though the global peak date 
for the entire orchard was found, the algorithm has certain disagreements with the human 
judgment regarding the blooming peak date of individual trees. These disagreements, how-
ever, are of a single day in most cases (> 90%). This finding may pave the way toward tree-
specific thinning, especially if the whole process can be automated with mobile vehicles 
which close the loop and enable thinning of different trees in different days without extra 
human effort. More research is required to understand if the current algorithm’s accuracy is 
enough for tree-specific thinning and to estimate the possible benefits of such policy.
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